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Short Papers

The Q-Factor of Coaxial Resonators Partially Loaded

with High Dielectric Constant Microwave Ceramics

SADAHIKO YAMASHITA, MEMBER, IEEE, AND MITSUO

MAKIMOTO

Abstract —The quahty factor of partially loaded dieketric coaxial stepped

impedance resonatop (PDSIR) has been anafyzed, includiug anafysis of

the dielectric constant c, and the dielectric loss tan8 of the ceramics. The

Q-factor of several resonators is ako calculated and compared with the

experimental results. This shows that the Q-f actor degradation lessens

even though the resonator length ~omes small when the total length

-L, > l/~ and becomes large when L, < l/~.

I. INTRODUCTION ,

The stepped ‘impedance resonator has beeri introduced and
analyzed to achieve miniaturization of high Q resonators [1].
Effective reduction in size can be achieved by employing high
dielectric constant ceramics for coaxial resonators. The TEM-
mode coaxial resonators of fully dielectric-loaded ceramics have

also been introduced [2], [3], and the authors have introduced a

partially loaded dielectric ceramic stepped impedance resonator

(PDSIR) to reduce resonator size.

In this paper, the Q-factor of a PDSIR is analyzed and

compared with a few experimental results. To obtain a high

Q-factor, it is important to use low-loss microwave ceramics and

high dielectric material to make the resonator more compact. The

Q-factors are calculated for a copper conductor with dielectric

ceramics of dielectric constant c,= 35, including the loss tangent

factor of the ceramics. The experimental result: are obtained at

900 MHz. The dielectric used here have a loss tangent factor of

1 x 10-4 at X-band [4].

II. THEOtiTICAL ANALYSIS

The PDSIR is shown in Fig. 1. The Q-factor can be obtained

from the general definition which is given by

Q=2mf0.
energy stored

energy lost per cycle “
(1)

The Q-factor k calculated by considering two transmission

lines and using the parameters shown in Fig. 1. The current and

voltage distribution of line I is considered as

I(x) =@os&x

V(x) =jZ1lOsin~lx. (2)

At resonance, the stored energy in the form of magnetostatic

energy and that of electrostatic energy are equal. The electromag-

netic energy in the inductance is then considered. The unit length

inductance in line I can be expressed as

L1=(pO/4n)ln(b/al) (3)

where

Po=4mxlo-7(H/’m).
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Fig. 1. Cross-sectional view of a PDSIR under analysis.

The stored energy WI k line I can be obtained using (2)

w,= (L, /2) J’’lIo(x)l%x

= (L,l~/8~1)(2fl, +sin2(?1) (4)

where 01 = /3111 and /31 is the phase constant.

The voltage and current distribution in line II can be expressed

with the condition of current continuity at x =11 from (2)

1(.x) =10(cos81/sin02 )sin&. (12-x)

L’(x) =jvocos&(12–x) (5)

where

b2=&&, e2=13212.

Then the stored energy in line II is

w,= (L2/2)J:’+%(x)l%ix

= (L21j/8/3,)(cos 0,/sin02)2(202 -sin202) (6)

where

L2 = (po/4~)ln(b/a2).

The lost energy is in three parts: the lost energy in the shorted

end section of line I (P,), the lost energy in line I (P,), and that

in line II ( P2 ). The edge capacitance effect of the open section of

line II is ignored here.

The total resistance R in the shorted end section using the

surface resistivity r, can be expressed as

R =~b’rf/(2rr) dr= r2/(2tr)ln(b\al). (7)
al

Thus the lost energy is

P,= (1/2)1~R = (r~/4n)1~Z~(b/al). (8)

The voltage and current at x =11 in line I taken from the

shorted end point and’ at x = 12 in line II taken from the open

end point can be obtained from the transmission equation of

each line since the current is equal at the point where the
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impedance becomes stepped (see Appendix) 1.0 ?

~1 =’loZ1(a,llcos O1,+ jsind, )

11 =lO(COSO1 +ja111sin6’i)

V2 = 10Zz (COS02 + ja212 sin 131)

12= 10(cos01/sin82) (a212cos02 + jsin02). (9)

Therefore, the lost energy in line I and II is as follows:
5 .5 -

P,=(l/2)]v,l.lI,lcose,

P2=(l/2)lv21.1121 cosoo

where 0, and 00 represent phase difference in

current of each line.

Thus, the Q-factor can be obtained from (1)

Q= Zwfo. ‘1+ ‘2
P,+ P,+P2”

(lo)

the voltage and

K =0.2

12=2 mm
tani=l.lo-’

(11) oo~
200

21

The conductor loss constant al and az are estimated from the Fig. 2. Normalized Q-factor as a function of 2, at various K values with a

expression [5]
constant dielectric thickness,

al = (7/2) (8p0/A)(l/al +l/b)/ln(b/al)

a2 =~(n/z)(%/~)(1/a2 + l/b)ln(b/a2)

1.0

F

K=o.11

+(27r&/A)tan8 (12) ;.fl
.--.” -0.05

where //

8 = ~= skin depth; =0.5

u conductivity of metal; and G ““

tan 8 loss tangent of dielectric material.
,~.--.-.—.~,o ,

When 1 = A/2 where A is a wavelength, and 12= O and there is

no shorted end loss, this corresponds to a conventional half-wave
o~

resonator. The Q-factor is derived from (14) as follows: o 0.2 , 0.4

Qo = ‘2foWi/P, = /1,/2 a,. (13) Lt

This is the well-known formula for a conventional half-wave
(a)

resonator.
1.0

III. IIESULTS
u=,,,

The numerical calculation was carried out with the following

parameters:

[(

frequency

conductor metal

outer conductor of the resonator

dielectric. constant of the ceramics

loss tangent of the ceramics

900 MHz;

Cu u = 5.8x 107 (i2/m)

r, = 7.827x 10–3

b =10 mm;

er =35;

tan8=lxlo-4. l____‘“5/--’-’
o

0 .2 .4 .6 .8 D

The physical dimensions of a PDSIR is designed according to Lt
the following resonance condition [1]: (b)

tan/3,1,tanfi@,12= K ( 14) Fig. 3. Normalized Q-factor as a function of normalized resonator length L,.

where K = Z2 /Z1, and the resonator lengths of line I and II are

normalized by a quarter wavelength, that is

L1 = 11/Ao/4

L2 = 12/Ao/4

L,= (11 + 12)/Ao/4 (15)

where k o is a wavelength at resonant frequency. In a uniform

coaxial resonator of air dielectric, Q-factor has its maximum

value at Z = 77 Q, and this corresponds to K = 1.0 and Z, = 77,

11= Ao/4, 12 = O in a PDSIR. When the Q-factor is normalized,

its value is expressed as Q. = Q/Q., when QO is given by (13).

Where Q. also depends on b, and b = 10 mm then Q.= 1240. The

normalized Q-factor can therefore be expressed by

Q.= Q/1240 (16)

where Q is the calculated value. Fig. 2 shows the Q-factor of a

resonator as a function of Z, with variable parameter K with the

constant dielectric length 12 = 2.0 mm. This shows that Z1 corre-

sponding to a maximum Q increases with decreasing K.

In Fig. 2, the totaf resonator length also varies with parameter

K. When designing a PDSIR, it is important to select K and L,

from the viewpoint of the Q-factor. Fig. 3(a) and (b) shows

Q-dependence versus normalized length L, with different parame-

ter K. Fig. 3(b) illustrates the case with small resonator length
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4. Normalized Q-factor and normalized resonator length ,5, as a func-
tion of dielectric thickness at constant K.
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z,
5. Normalized Q-factor as a function of Z, at various dielectric loss of

ceramics.

6. (a) An experimental PDSIR and (b) an inner conductor with dielec-
tric material.

TABLE I

EXPERIMENTALAND CALCULATEDRESULTSFORTHE Q-FACTOR IN

PDSIRS AT 900 ivflfz

m. -~ mnwllized Q-f- at 90C42f2
dheter bhl —tea laqth u ratin K calculated I Fxprhw

1 15 0.27 0.27 1421 1077

2 15 0.27 0.17 1701 1161

3 10 0.16 1.0 957 773

4 10 0.27 0.2 1004 812

5 10 0.27 0.17 1032 809

6 10 0.15 0.105 868 705

7 10 0.15 0.08 890 729

8 10 . 0.15 0.06 834 751

and (a) shows the near quarter-wavelength region. As is clearly

shown, Q depends greatly on the parameter K and not on

resonator length Lt. The Q degradation is small as a function of

the resonator length but great when L, is less than I/&. Fig. 4

shows Q dependence on dielectric length 12 at constant K. When

K = 0.17 with c,= 35, the inner conductor is uniform. Although

total resonator length L, depends greatly on 12, Q is only slightly

dependent on 12. A resonator which is compact in volume can

therefore be designed without much Q degradation.

The loss of the dielectric material is also important. The loss

factor dependence is’ shown in Fig. 5 with the same resonator.

The Q degradation becomes greater when tan 8 is larger than

1X1O-4.

The experiment was carried out for various resonator lengths

and K parameters. Fig. 6 shows the experimental resonator and

dielectric ceramics used. A comparison of experimental and

calculated Q-factors is shown in Table I. The designed resonant

frequency of resonators is not exactly 900 MHz, but the results

were all converted to the Q-values of a resonator at 900 MHz.

fV. CONCLUSIONS

The Q-factor of a PDSIR can be analyzed and calculated.

From this analysis, the following results are obtained.

(a) The Q-factor depends greatly on the parameter K( =

Z2/Z1 ) rather than the total resonator length Lt.

(b) The Q-factor degrades greatly when the normalized resona-

tor length Lt <0.2.

(c) The maximum Q-factor depends on the impedance Z1 and

this becomes high with low K values.

The above results indicate that to obtain a high Q PDSIR, a

value for K must be chosen which is as large as possible when the

resonator length Lr is small. Such a resonator can be small in size

yet have low Q degradation compared with conventional capaci-

tor-loaded resonators.

APPENDIX

The transmission equation in line I including the loss term can

be expressed as

V(x) =vO. coshyx=Vo. cosh(al +j~l)X ,

Z(x) =Zi. sinhyx= Z1. sinh(al+j~l)x

when alx <<1, coshalx = 1, Then, ~1 and II at x = 1, can be

expressed as (8).
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Mlcrostrip Reactive Circuit Elements

HARRY A. ATWATER, SEN1ORMEMBER,IEEE

Abstract — Quantitative design information is given for some pIanar

distributed microwave circuit elements. A microstripline section is calcu-

lated as a paraflel tuning element, and the radial-line stnb and open- and
short-circuited coupled microstrip stnbs are treated. Typical applications

showing measurements on circuits utilizing planar tuning elements are also

presented.

I. INTRODUCTION

In the design of microstnp circuits for impedance matching,

tuning, and bias-line functions, a relatively limited number of

planar circuit configurations is available to fulfill circuit design

requirements for inductive, capacitive, and resonant elements.

Distributed circuit elements, having dimensions comparable with

a wavelength in size, typically require significant amounts of area

on the rnicrostrip surface but are simpler to realize in thin film

technology than lumped capacitors or inductors.

II. Tm RADIAL-LINE STUB

The quarter-wavelength open-ended shunt stub of microstnp-

line is conventionally employed to establish a point of low

impedance relative to the ground plane in mixers and switching

circuits and in bias-line circuits. For a stub with low characteri-

stic impedance 20, the point of low impedance at the stub input is

indeterminate by an amount equal to the width of the

microstripline. A radial-line stub has been proposed to overcome

this indeterminacy [1], [2], but a simple calculation for the radii

of the resonant radial-line sector (Fig. 1) is not widely available.

Based on an assumed radial-wave solution in the substrate dielec-

tric with magnetic walls at the boundary of the stub, Vinding [1]

has proposed for the reactance presented at the inner radius rl

x, = 360 COS(8,– +2)~zo(r, )—
27rr, ~ sm(+l-$z)

(1)
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Fig, 1. Radica-fine stub coordinates. (Substrate height= h.)
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F1g. 2. Plot of (2). Broken line shows typical solution.

where

No ( krl )
tRrl@,=—

Jo ( kr, )

J, ( kri )
trmr//,=——

M(k)
(i=l,2)

Zo(r, )= ~[J~(kr,)+iV~(kr, )]”2
c,

.[Jf(kr,)+N~(kr, )]-’12

k = 27rfi/Ao.

In (1) above, ~ ( x) and N, ( x) are Bessel functions of the first and

second kinds, of i th order.

For a resonant stub we assume Xl = O in (1), which leads to

N,(/cr2) No(kr, )
— .—
J, ( krz ) Jo(krl) “

(2)

A plot of (2) is shown in Fig. 2. A solution of (2) is represented
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