IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 6, JUNE 1983

Short Papers

485

The Q-Factor of Coaxial Resonators Partially Loaded
with High Dielectric Constant Microwave Ceramics

SADAHIKO YAMASHITA, MEMBER, IEEE, AND MITSUO
MAKIMOTO

Abstract —The quality factor of partially loaded dielectric coaxial stepped
impedance resonators (PDSIR) has been analyzed, including analysis of
the dielectric constant ¢, and the dielectric loss tan 8 of the ceramics. The
Q-factor of several resonators is also calculated and compared with the
experimental results. This shows that the Q-factor degradation lessens
even though the resonator length beromes small when the total length
L,>1/fc, and becomes large when L, <1//, .

I. INTRODUCTION

The stepped impedance resonator has been introduced and
analyzed to achieve miniaturization of high Q resonators [1].
Effective reduction in size can be achieved by employing high
dielectric constant ceramics for coaxial resonators. The TEM-
mode coaxial resonators of fully dielectric-loaded ceramics have
also been introduced [2], [3], and the authors have introduced a
partially loaded dielectric ceramic stepped impedance resonator
(PDSIR) to reduce resonator size.

In this paper, the Q-factor of a PDSIR is analyzed and
compared with a few experimental results. To obtain a high
Q-factor, it is important to use low-loss microwave ceramics and
high dielectric material to make the resonator more compact. The
Q-factors are calculated for a copper conductor with dielectric
ceramics of dielectric constant €, = 35, including the loss tangent
factor of the ceramics. The experimental results are obtained at
900 MHz. The dielectric used here have a loss tangent factor of
1x10~* at X-band [4].

II. THEORETICAL ANALYSIS

The PDSIR is shown in Fig. 1. The Q-factor can be obtained
from the general definition which is given by

Q =27fy (1)

The Q-factor is calculated by considering two transmission
lines and using the parameters shown in Fig.-1. The current and
voltage distribution of line I is considered as

I(x) = Iycos B1x
V(x)=jZI,sinB,x. )

At resonance, the stored energy in the form of magnetostatic
energy and that of electrostatic energy are equal. The electromag-
netic energy in the inductance is then considered. The unit length
inductance in line I can be expressed as

Ly=(po/4n)In(b/a,)

energy stored
energy lost per cycle

(3)
where

—4a X10 " (H/m).
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Fig. 1. Cross-sectional view of a PDSIR under analysis.

The stored energy W, in line I can be obtained using (2)
I
Wi= (Li/2) [ (<) dx

= (L,12/88,)(26, +sin26,) (4)

where 8, = B,/, and B3, is the phasé constant.
The voltage and current distribution in line II can be expressed
with the condition of current continuity at x =/, from (2)

I(x)=1I,(cos8,/sinb,)sin B,(I, — x)
V(x)= j¥ycosBy (I, =~ x) (5)
where )
ﬂz=\/€ﬁn 0, =Ba1ls.

Then the stored energy in line II is

= (L)

L+

[T (x)|* dx

= (L,13/8B,)(cos 8,/sinb,)*(20, —sin26,) (6)

where
Ly = (po/A7)n(b/ay).

The lost energy is in three parts: the lost energy in the shorted
end section of line I (P,), the lost energy in line I (P)), and that
in line II (P,). The edge capacitance effect of the open section of
line II is ignored here.

The total resistance R in the shorted end section usmg the
surface resistivity r, can be expressed as

R=["r,/@ur)dr=r,/(2n)1,(b/a,). ()
Thus the lost energy is
Ps=(1/2)I§R=(rs/47r)1021n(b/a1) (8)

The voltage and current at x =1/, in line I taken from the
shorted end point and at x =/, in line II taken from the open
end point can be obtained from the transmission equation of
each line since the current is equal at the point where the
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impedance becomes stepped (see Appendix)
Vi=1,Z,(a;l,cos 8, + jsin8,)
I,=1Iy(cos8, + ja,l;sinf,)
Vy=1,Z,(cos 0, + ja,l,sinb,)

I, =1I,(cos8,/sin8,)(a,l,co8 6, + jsinb;). (%)
Therefore, the lost energy in line I and II is as follows:
P, = (1/2)Vi||1\]cos b
Py = (1/2)|V,|"|I;]cos b, (10)

where 6, and 6, represent phase difference in the voltage and
current of each line. ,
Thus, the Q-factor can be obtained from (1)
_ W+ W,
Q=27 53 p v P,

(11)

The conductor loss constant a; and a, are estimated from the
expression [5]

a;=(7/2)(8po/A)(1/a; +1/b)/In(b/ay)
a2=‘/<',(7r/2)(8p0/>\)(1/a2+1/b)ln(b/a2)
+(2mfe, /A )tand  (12)
where

8§=y2/wpgo skin depth;
o conductivity of metal; and
tand loss tangent of dielectric material.

When /=27 /2 where A is a wavelength, and /, = 0 and there is
no shorted end loss, this corresponds to a conventional half-wave
resonator. The Q-factor is derived from (14) as follows:

Qo =2 W\ /Pi=8,/2a,. (13)

This is the well-known formula for a conventional half-wave
resonator;

III. RESULTS

The numerical calculation was carried out with the following
parameters:

900 MHz,
Cuo=58X107(Q/m)
r=17.827x10 3

b =10 mm;

€, = 35;
tand=1x10"*

frequency
conductor metal

outer conductor of the resonator
dielectric.constant of the ceramics
loss tangent of the ceramics

The physical dimensions of a PDSIR is designed according to
the following resonance condition [1]:

tan B/, tany/e, B/, = K (14)

where K = Z,/Z,, and the resonator lengths of line I and II are
normalized by a quarter wavelength, that is

Li=1/X\/4

Ly=1L/Ao/4

Lt=(ll+12)/>\0/4 (15)
where A, is a wavelength at resonant frequency. In a uniform
coaxial resonator of air dielectric, Q-factor has its. maximum
value at Z= 77 ©, and this corresponds to K =1.0 and Z; = 77,
li=2Ay/4, 1, =0 in a PDSIR. When the Q-factor is normalized,

its value is expressed as Q, = Q /0y, when Q, is given by (13).
Where Q, also depends on b, and b =10 mm then Q, = 1240. The
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Fig. 2. Normalized Q-factor as a function of Z; at various K values with a
constant dielectric thickness.
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Fig. 3. Normalized Q-factor as a function of normalized resonator length L,.

normalized Q-factdr can therefore be expressed by
0,=0/1240 (16)

where @ is the calculated value. Fig. 2 shows the Q-factor of a
resonator as a function of Z; with variable parameter K with the
constant dielectric length /, = 2.0 mm. This shows that Z, corre-
sponding to a maximum ¢ increases with decreasing K.

In Fig. 2, the total resonator length also varies with parameter
K. When designing a PDSIR, it is important to select K and L,
from the viewpoint of the Q-factor. Fig. 3(a) and (b) shows
Q-dependence versus normalized length L, with different parame-
ter K. Fig. 3(b) illustrates the case with small resonator length
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Fig. 4. Normalized Q-factor and normalized resonator length L, as a func-
tion of dielectric thickness at constant K.
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Fig. 5. Normalized Q-factor as a function of Z, at various dielectric loss of
ceramics.
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Fig. 6. (a) An experimental PDSIR and (b) an inner conductor with dielec-
tric material.
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TABLE I
EXPERIMENTAL AND CALCULATED RESULTS FOR THE Q-FACTOR IN
PDSIR’s aT 900 MHz
No. | Quter conductor | Normalized : Q-factor at 900Miz
diameter b(mm} | resonator length Lt | ratio K = | Calculated | Experimental
1 15 C0.27 0.27 1421 1077
2 15 0.27 0.17 1701 f - 1961
3 10 . 0.16 1.0 957 773
4 10 0.27 0.2 1004 812
5 10 0.27 0.17 1032 809
6 10 0.15 0.105 88 705
7 10 0.15 0.08 890 729
8 10 N 0.15 0.06 834 751

and (a) shows the near quarter-wavelength region. As is clearly
shown, Q depends greatly on the parameter K and not on
resonator length L,. The Q degradation is small as a function of
the resonator length but great when L, is less than 1/ f Fig. 4
shows Q dependence on dielectric length /, at constant X. When
K = 0.17 with ¢, =35, the inner conductor is uniform. Although
total resonator length L, depends greatly on /,, Q is only slightly
dependent on /,. A resonator which is compact in volume can
therefore be designed without much Q degradation.

The loss of the dielectric material is also important. The loss
factor dependence is shown in Fig. 5 with the same resonator.
The Q degradation becomes greater when tand is larger than
1x10~4

The experiment was carried out for various resonator lengths
and K parameters. Fig. 6 shows the experimental resonator and
diclectric ceramics used. A comparison of experimental and
calculated Q-factors is shown in Table I. The designed resonant
frequency of resonators is not exactly 900 MHz, but the results
were all converted to the Q-values of a resonator at 900 MHz.

-IV. CONCLUSIONS

The Q-factor of a PDSIR can be analyzed and calculated.
From this analysis, the following results are obtained. ‘

(a) The Q-factor depends greatly on the parameter K(=
Z, /Z,) rather than the total resonator length L,.

(b) The Q-factor degrades greatly when the normahzed resona-
tor length L, < 0.2.

(¢) The maximum Q-factor depends on the impedance Z; and
this becomes high with low X values.

The above results indicate that to obtain a high Q PDSIR a
value for K must be chosen which is as large as possible when the
resonator length L, is small. Such a resonator can be small in size
yet have low Q degradation compared with conventional capaci-
tor-loaded resonators.

" APPENDIX

The transmission equation in line I including the loss term can
be expressed as
V(x)=Vy-coshyx =¥,-cosh (e, + jB) x
I(x)=Z,-sinhyx = Z,-sinh (a; + jB,) x
when a;x <1, cosha;x =1. Then, ¥, and I, at. x =1/, can be
expressed as (8).
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Microstrip Reactive Circuit Elements

HARRY A. ATWATER, SENIOR MEMBER, IEEE

Abstract — Quantitative design information is given for some planar
distributed microwave circuit elements. A microstripline section is calcu-
lated as a parallel tuning element, and the radial-line stub and open- and
short-circuited coupled microstrip stubs are treated. Typical applications
showing measurements on circuits utilizing planar tuning elements are also
presented.

1. INTRODUCTION

In the design of microstrip circuits for impedance matching,
tuning, and bias-line functions, a relatively limited number of
planar circuit configurations is available to fulfill circuit design
requirements for inductive, capacitive, and resonant elements.
Distributed circuit elements, having dimensions comparable with
a wavelength in size, typically require significant amounts of area
on the microstrip surface but are simpler to realize in thin film
technology than lumped capacitors or inductors.

II. THE RADIAL-LINE STUB

The quarter-wavelength open-ended shunt stub of microstrip-
line is conventionally employed to establish a point of low
impedance relative to the ground plane in mixers and switching
circuits and in bias-line circuits. For a stub with low characteris-
tic impedance Z,, the point of low impedance at the stub input is
indeterminate by an amount equal to the width of the
microsttipline. A radial-line stub has been proposed to overcome
this indeterminancy [1], [2], but a simple calculation for the radii
of the resonant radial-line sector (Fig. 1) is not widely available.
Based on an assumed radial-wave solution in the substrate dielec-
tric with magnetic walls at the boundary of the stub, Vinding [1]
has proposed for the reactance presented at the inner radius r,

cos( 8, —
h 360 cos(6,—¢,) (1)

%= mZO(rl)T sin (¢, -¥,)
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Fig. 1. Radial-line stub coordinates. (Substrate height = 4.)

~—TYPICAL SOLUTION

Fig. 2. Plot of (2). Broken line shows typical solution.

where
Ny (kry)
tanf, = —>—12
1 Jo(k"x)
Ji(kr,)
= — =1,2
oy, == 45 (1=12)
1207
Zo(rl)=——[J02(k"1)+N02(k"1)]1/2

Jer
[T+ NE(Rr)] T
k=2m/e,. /X,.

In (1) above, J,(x) and N,(x) are Bessel functions of the first and
second kinds, of ith order.
For a resonant stub we assume X; = 0 in (1), which leads to

N, (kry) _ Ny (kry)
Ji(kry) - Jo(kry) @

A plot of (2) is shown in Fig. 2. A solution of (2) is represented
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